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AbslracL The balance-equalion thcory recenlly developed for miniband Bloch transpott 
in semimnductor superlattices is extended 10 syslems wilh a stmng lateral confinement. 
Carrier stalislics, electron heating, and realistic scallering mechanisms due lo  impurities 
and phonons are included in the farce- and energy-balance equations. Impurity- and 
phonon-limited linear mobilities arc investigated as Iunctions of the canier occupalion and 
temperature. The non-linear behaviour of the drifl velocity against electric field for these 
one-dimensional superlattices. derived fmm the balance-equation theory, exhibits feamres 
different Irom thal of a three-dimensional superlaltice, but similar to lhe predictions of 
the E&-Tsu and Bollzmann lheories. 

1. Introduction 

Recent technological advances in semiconductor microfabrication, which have made 
it possible to confine electrons to regions with a lateral extent of order of lOOnm or 
less, have stimulated growing interest in electron transport through a string of coupled 
quantum dots or a one-dimensional semiconductor superlattice [l, 21. Experimental 
and theoretical studies have so far concentrated mainly on its ballistic transport 
properties at very low temperatures, when elastic and inelastic scatterings can be 
avoided and quantum coherence and related phenomena are expected to show up. 
On the other hand, carrier conduction of the Esaki-Bu type [3] through a one- 
dimensional superlattice, which is subject to impurity and phonon scatterings, is also 
of great interest. 

There are two different types of theories for superlattice miniband transport. The 
earliest model of Esaki and ?Su 131, considering a single electron moving in a one- 
dimensional miniband of width A with a constant scattering time r ,  gave a simple 
relation between the drift velocity ud and the electric field E: 

where E, = l f e r d ,  up = Ad/4,  and d is the period of the superlattice. This 
formula states that the drift velocity reaches its maximum up at a field equal to the 
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critical value Ec, and that when E > E, the drift velocity decreases with increasing 
electric field, i.e. the negative differential velocity. Later, more careful solutions of 
the Boltzmann equation with one (elastic) scattering time [MI or with two (elastic 
and inelastic) scattering times [7-91 yielded, except for the expression of U the same 
dependence of ud/up as a function of ElE,,  independent of the superlattlce period, 
miniband width, scattering times and temperature. 

On the other hand, the balance-equation theory recently developed [lo, 111 for 
carrier miniband transport in a three-dimensional superlattice with realistic impurity 
scattering and electron-phonon interactions, predicts a widely wrying temperature- 
and miniband-width-dependent non-linear velocity-field behaviour [12]. Since theories 
of the Esaki-nu-Boltzmann (ETB) type developed so far deal essentially with one- 
dimensional models using a constant scattering-time approximation, it is not clear 
whether the distinct predictions for the velocity-field behaviour from these two types 
of theories are intrinsic in nature, or result from the dimensionality difference of the 
systems they deal with, or from the constant scattering-time approximation used by 
the former. 

The purpose of this paper is to extend the balance-equation theory for the 
miniband Bloch transport to a one-dimensional superlattice with realistic impurity 
and phonon scatterings, and to  study thc cffcct of thc carricr confincment on its 
miniband transport. The results will be compared with Esaki-nu and Boltzmann 
theories. 

p: 

2. Balance equations for a 1D superlattice 

Consider a model superlattice system along the  z direction, which is formed by 
periodical potential wells and barriers of finite height. In the Z-y plane there exists 
an infinitely high potential wall such that electrons are confined in a small cylindrical 
region of diameter d,. The single-electron state of the system can be described by 
transverse quantum numbers 1 ,  a longitudinal miniband index n and a longitudinal 
wavevector k, ( - n / d  < k, < r / d ,  where d is the period of the superlattice). 

We assume that the energy separation between the transverse ground and excited 
states, and the energy gap between the longitudinal lowest and second minibands, 
are large enough; then only the transverse ground state and the longitudinal lowest 
miniband need be taken into consideration. We thus have a quasi-lD system, the 
state of which can be described by simply a one-dimensional wavevector k,, with the 
energy dispersion, under the tight-binding approximation, expressed in the form 

& ( k , )  = (A/2) (1-cosk2d)  (2) 
where A is the miniband width. 

When a uniform electric field E is applied parallel to the superlattice axis, the 
carriers are accelerated by the field and scattered by impurities and by phonons, 
resulting in an overall drift motion and possible heating of the carrier System. Such 
a transport state of the system is described in the balance-equation theory by the 
centre-of-mass (CM) momentum Pd Np, (where N is the total number of carriers) 
and the relative electron temperature Te, and they are determined by the effective 
force- and energy-balance equations [lo, 111: 

dud/dt  = e E / m z  -I- Ai + A, 

dhJdt  = e E v ,  - W .  

(3) 

(4) 
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In the above 

(where v ( k , )  = de( k,)/dk, is the velocity function in the z direction) is the centre- 
of-mass velocity, i.e. the average drift velocity of the carriers, and he is the average 
electron energy per carrier. Furthermore 

is an ensemble-averaged inverse effective-mass, introduced to describe the response 
of the electron system to an external field. In the above equations 

f ( * ( k z ) , T )  = {exp(i(k;) - u)/T,I + I}-' (7) 
is the Fermi distribution function at the electron temperature Te, p is the chemical 
potential determined by the condition 

and 

E ( k z )  E - P a )  (9) 
is the relative electron energy. 

Assuming that impurities are randomly distributed in the background and phonons 
are three-dimensional bulk modes, we can write the impurity. and phonon-induced 
frictional accelerations, Ai and A , and the energy-transfer rate from the electron 
system to the phonon system, W, in the following form: P 

2nn. 
N 

Ai = --l Iu(~)121J(4s~4y)121g(4~)12~~(~, + 4 , )  - v(k,)1 
k. .q 
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Here u(q) is the 3D Fourier transform of the impurity potential and M ( q ,  A )  is the 
3~ plane-wave representation of the electron-phonon matrix element for phonons 
of wavevector q in branch A, having frequency flq,A; n(z) (e' - I)-, is the 
Bose function and e ( q , w )  is the dielectric function of electrons in the random-phase 
approximation. In  these equations J ( q , , q , )  is a form factor due to the confinement 
of the lateral ground-state wavefunction d(z, y): 

and g ( q , )  is a form factor determined by the wavefunction of the superlattice 
miniband. In the extreme tight-binding limit for the envelope function it is simply 
the form factor of a single quantum well: g ( q , )  = d-' Jdz1+(z)I2exp(iq,z), where 
m ( z )  is the single-well function. 

3. Temperature variations of the Fermi level and eRective mass 

In terms of the electron density per unit line along the z direction, NI, equation (8)  
for the determination of the Fermi energy can be written as 

The zero-temperature Fermi level, E: p(O), is given by 

This limit is valid when A/2Te >> 1. In the opposite limit, A/2Te < I, we have 

Note that the maximum number of electrons the lowest miniband can accommodate is 
N,d = 2. Equation (16) shows that in the high-temperature limit p / T ,  approaches 
a constant, -In(2/N,d - l), which is negative when N,d < 1 and positive when 
N,d > I. The non-degenerate (Maxwell-Boltzmann) limit thus does not generally 
exist in this system, except for very small N,d 0, such that In(2/N1d - 1) >> 1. 
When N,d = 1 (half filled), the Fermi level p = ~ ( 0 )  = A/2 ,  does not vary with 
temperature. The average drift velocity and the inverse effective-mass of the System 
can be expressed as 

PIT, = -In(2/N,d - 1) + A/2T,. (16) 

U,, = vma$?)sin(p,d) (17) 

with U, = Ad/2, 1/M' = Ad2/2,  and 

is a temperature-dependent coelhcient. In the low-temperature limit 

ay) = s in (knNld) / ( inNld )  (20) 

a$?) = (1 - N,d/2)(A/4Te). 

and a t  high temperatures, A/2T, << 1, we have 

(21) 
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4. Linear mobilities 

The steady-state version of the balance equations (3) and ( 4 )  determines the DC 
drift velocity and the electron temperature under the influence of a constant electric 
field along the z direction. In the weak electric-field limit these equations require 
T, = T ,  and the inverse linear mobility l / p  equals the sum of the impurity and 
phonon contributions: 

U P  = 1IPi  + l/Pp (22) 
in which the impurity-induced inverse mobility l /p i  is given by 

where ni is the impurity density, lG(q,)I* is an effective one-dimensional impurity 
potential obtained from a statically screened and farm-factor-weighted 3D plane-wave 
representation of the impurity potential 1u(q)I2: 

The inverse mobility induced by the A-branch phonons is given by 

x [sin(k, + 4,)d - sin(k,d)I26(~(kz + q z )  - 4 k Z )  + 
x I -n’(n, , i /T)I[f(~(k~) ,T)  - I ( 4 k z )  - fi,,,i,T)I (25) 

with hi(q, A )  E M ( q ,  A ) / e ( q , Q q , A )  being the screened electron-phonon matrix 
element. 

Carrying out the integration over k, in (23) to eliminate the 6 function, we can 
express the impurity-limited linear mobility in the form 

with 

(27) 
A w 

2 T  T ’  U* = - [ l fcos(q ,d /2) ] -  - 

Due to the existence of the form factor I g ( q , ) l Z ,  the dominant contribution to the 
integral in (26) comes from lqzl < n / d .  TO see the explicit dependence of l /p i  on 
the electron density, miniband width and superlattice period, we assume that IG(q,)12 
can be approximately treated as a constant C2. In the degenerate limit we thus have 
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Figure 1. Impurity-limited low-field mobility pi 
normalized by iuvalue at N l d  = I ,  pi( 1). is shown 
as a function of N l d  at temperatures T = 4.2, 
IS, 30, 71 and 300K. for a ID superlattice of 
period d = ISOA and miniband width A = ISOK. 
The inset gives I/pi(l) values as a function of 
temperature. temperature. 

Figure 2. Acoustic-phonon-limited I--field mobil- 
ity pp normalized by its value at N l d  = 1, pp(l) ,  
is shown as a function of N l d  at temperatures 
T = 15, 30, 77 and 300K for a I D  superlatlice of 
period d = l50A and miniband width A = ISOK. 
The inset gives l /pp( l )  values as a function of 

The constant C,, being of order of one, depends on the form factor. This equation 
is valid if E:/T K 1. 

At high temperatures, A/2TC << 1, the impurity-induced inverse mobility can be 
written as 

1 64 n i G Z  T C, 
pi 
- - -____ - 

?r ed3A2 A (1  - Ntd/2) (29) 

where 

C h  = 1 d ~ l g ( y / d ) l ~ l s i n ( ~ / 2 ) 1  (30) 

is also a constant of order of one. If Ig(g,)12 = 1 for 1q,1 < r r / d  and lg(q,)I2 = 0 
otherwise, we have both C, = 1 and C, = 1. Equations (29) and (U)) indicate that 
in a one-dimensional superlattice, the impurity-limited linear mobility varies strongly 
with the miniband occupation. At zero temperature the mobility approaches zero 
when N,d 3 0 or  Nld  - 2, and the highest mobility is reached at N,d 0.8. This 
behaviour is a consequence of Fermi statistics and the finite miniband width. For 
the case of Nld = 2, i.e. a filled miniband, the mobility of course vanishes. At low 
temperatures only a small part of the total carriers around the Fermi level contributes 
to the transport. The percentage of the carriers taking part in the conduction reaches 
a maximum in the case of a half-filled miniband, resulting in a mobility maximum 
around N,d = 1. With the rise in temperature an increasing percentage of the carriers 
takes part in the conduction, especially for small N,d, leading to a diminishing of the 
mobility maximum. At high temperatures the mobility decreases monotonically with 
increasing N,d and approaches zero when N,d - 2. 

The impurity-limited linear mobilities pi at several lattice temperatures, 
normalized separately by their values at N,d = 1, pi( l ) ,  are plotted in figure 1 
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Figure 3. Drift velocity vd normalized to its peak 
value up is plotted as a function of the normalized 
field EIE,, calculated from the  balance equations 
(3) and (4), respectively at lattice temperalure 
T = 45, 77 and 150K, for a ID superlattice 
of d = I50A. A = 150K N t d  = 0.9 and 
low-field inverse mobility l / p  = 0 . 1 V ~ m - ~  at 
temperature T = 4.2K. The peak drift velocities 
and critical fields a re  up = 6.5 x 10' cm s-' and 
E, = l(nVcm-' for the T = 45K cuwe, 
up = 4.3 x 105cms-L and E, = 155Vcm-' for 
the T = n~ NPVC, and up = 2.4 x 10~cms- l  
and E, = 280Vcn-' for the T = IWK C U N ~ .  

The dots in the figure represent the behaviour of 
equation (I). The inset shows vd against E for 
these systems. 

I 
0 1 2 - 3  I 5 

0.0 

WE. 
~ igure  A. vd/vp is plotted as a fuction of E I E ,  
at lattice temperature T = 45K for four ID 
GaAs superlattice systems having the Same period 
d = l50k Nld = 0.9 and low-temperature (4.2K) 
linear invene mobility l / p  = O.IVsm-', but 
diKerent miniband widths A = 18, 50, 150 and 
3WK. The peak drift velocities and the critical 
fields are up = 5.4 x I@cms-' and E, = 
9WVcm-' far the A = l 8 K  system, up = 
2.4 x Id ems-' and E, = 480Vcm-' for the 
A = SOK system, up = 6.5 x IO'cms-I and 
E, = 102Vcm-I for the A = 150K system, and 
up = 7.9 x 1a1cms-I and E, = 46Vcm-I for 
the A = 300K system. The dots in the figure 
represent the behaviour of equation (1). The inset 
shavs vd against E far these systems. 

for a one-dimensional superlattice of transverse confinement d, = loo.&, period 
d = 150% miniband width A = l S O K ,  and impurity-induced low-field inverse 
mobility l / p i ( l )  = O.lVsm-' at temperature T = 4.2K. These curves are obtained 
from (26) by assuming a constant lG(q,)1'. The q, dependence of C ( q , )  of course 
affects the behaviour of the mobility against N,d .  

Figure 2 shows the low-field mobility limited by the longitudinal and transverse 
acoustic phonon scatterings (through both the deformation potential and the 
piezoelectric couplings) as a function of N , d  for the same ID GaAs superlattice 
as described above. The mobility is calculated from (25) assuming three-dimensional 
bulk phonon modes and using standard electron-phonon matrix element and typical 
parameters for GaAs [13]. 

5. Non-linear velocity-field behaviour 

The steady-state non-linear drift velocity, ud, has been calculated as a function of 
the electric field E from the steady-state version of the balance equations (3) and 
(4) for several ID  GaAs superlattices. Scatterings due  to charged impurities, acoustic 
phonons (interacting with electrons through deformation and piezoelectric potentials) 
are taken into account. Optic phonons do not contribute to intra-miniband electron 
transitions when the miniband width A is smaller than the optic phonon energy, 
and thus play no role in the case we are discussing. In figure 3 we plot the 
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normalized drift velocity ud/zlp as a function of the normalized electric field E / E ,  
at lattice temperatures T = 45, 77 and 150% for a ID superlattice of d, = 100% 
d = 150% A = 150K, N,d = 0.9 and low-field inverse mobility l / p  = 0.1Vsm-2 
at temperature T = 4.2 K. The behaviour predicted by the Esaki-Bu and Boltzmann 
theories, equation (l), is shown in this figure as dots. 

In figure 4 we plot u d / u p  against E / E ,  at lattice temperature T = 45K, for four 
GaAs-based onedimensional superlattices having the same transverse confinement 
d, = 100% period d = 150% N , d  = 0.9 and low-temperature (4.2K) linear inverse 
mobility l / p  = 0.1Vsm-2, but with different miniband widths A = 18, 50, 150 and 
300K Also shown as dots in this figure are the predictions from (1). 

The striking feature is that, in all the 1~ superlattices investigated, the normalized 
vd/u - E / E ,  behaviour is very closed to that of equation (1) given by the Esaki-Bu 
and doltzmann theories, although their velocity-field curves appear quite distinct (see 
the insets of figures 3 and 4). This is in contrast with the three-dimensional case, 
where the balance-equation theory yields a variable behaviour [12] for zld/up against 
E / & .  
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